Role of contact electrification and electrostatic interactions in gecko adhesion.
نویسندگان
چکیده
Geckos, which are capable of walking on walls and hanging from ceilings with the help of micro-/nano-scale hierarchical fibrils (setae) on their toe pads, have become the main prototype in the design and fabrication of fibrillar dry adhesives. As the unique fibrillar feature of the toe pads of geckos allows them to develop an intimate contact with the substrate the animal is walking on or clinging to, it is expected that the toe setae exchange significant numbers of electric charges with the contacted substrate via the contact electrification (CE) phenomenon. Even so, the possibility of the occurrence of CE and the contribution of the resulting electrostatic interactions to the dry adhesion of geckos have been overlooked for several decades. In this study, by measuring the magnitude of the electric charges, together with the adhesion forces, that gecko foot pads develop in contact with different materials, we have clarified for the first time that CE does contribute effectively to gecko adhesion. More importantly, we have demonstrated that it is the CE-driven electrostatic interactions which dictate the strength of gecko adhesion, and not the van der Waals or capillary forces which are conventionally considered as the main source of gecko adhesion.
منابع مشابه
Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification.
Herein we describe a process—based on contact electrification and electrostatic interactions—that directs the selfassembly of chemically modified polystyrene microspheres to form three-dimensional microstructures. When two solid surfaces are brought into contact and separated, charge is often transferred from one surface to the other in a process known as contact electrification. 2] We can pred...
متن کاملShear adhesion between an elastica and a rigid flat surface
At the submicron scale, an elastic fiber adheres to a rigid surface when the surface forces induced by electrostatic, capillary, or van der Waals interactions exceed the elastic restoring forces for bending. Adhesion is aided by the application of a shear load to the base of the fiber, which will initiate or increase the length of side contact. The presence of a shear force is necessary for the...
متن کاملThe Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads
An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry a...
متن کاملThe adhesion model considering capillarity for gecko attachment system.
Geckos make use of approximately a million microscale hairs (setae) that branch off into hundreds of nanoscale spatulae to cling to different smooth and rough surfaces and detach at will. This hierarchical surface construction gives the gecko the adaptability to create a large real area of contact with surfaces. It is known that van der Waals force is the primary mechanism used to adhere to sur...
متن کاملDirect evidence of phospholipids in gecko footprints and spatula-substrate contact interface detected using surface-sensitive spectroscopy.
Observers ranging from Aristotle to young children have long marvelled at the ability of geckos to cling to walls and ceilings. Detailed studies have revealed that geckos are 'sticky' without the use of glue or suction devices. Instead, a gecko's stickiness derives from van der Waals interactions between proteinaceous hairs called setae and substrate. Here, we present surprising evidence that a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 11 98 شماره
صفحات -
تاریخ انتشار 2014